

MPE Engineering Ltd.

Conway Lift Station Limited Geotechnical Report

Prepared for:

Mark Baker, P.Eng. MPE Engineering Ltd. 125 Higgins Ave Winnipeg, MB R3B 0B6

Project Number: 0512-011-00

Date: December 18, 2023

Quality Engineering | Valued Relationships

December 18, 2023

Our File No. 0512-011-00

Mark Baker, P.Eng. MPE Engineering Ltd. 125 Higgins Ave Winnipeg, MB R3B 0B6

RE: Conway Lift Station Limited Geotechnical Report

TREK Geotechnical Inc. is pleased to submit our final report for the geotechnical investigation for the above noted project.

Please contact the undersigned should you have any questions.

Sincerely,

TREK Geotechnical Inc. Per:

Mull

Michael Van Helden, Ph.D., P.Eng. Senior Geotechnical Engineer

Encl.

Revision History

Revision No.	Author	Issue Date	Description
0	JSS	December 15, 2023	Draft Final Report
0	JSS	December 18, 2023	Final Report

Authorization Signatures

Prepared By:

Jagdeep Sidnu, El Geotechnical Engineering Intern

Michael Van Helden, Ph.D., P.Eng. Senior Geotechnical Engineer

Reviewed By:

Gil Robinson, M.Sc., P.Eng. Senior Geotechnical Engineer

Table of Contents

Letter of Transmittal

Revision History and Authorization Signatures

1.0	Intro	luction	3
2.0	Field	Program	3
	2.1	Sub-surface Investigation	3
	2.2	Soil Stratigraphy	4
	2.3	Power Auger Refusal	4
	2.4	Groundwater and Sloughing Conditions	4
3.0	Closı	ıre	7

Figures

Sub-Surface Logs

Appendices

List of Tables

Table 1. Summary of Seepage and Sloughing During Drilling	4
Table 2. Summary of Standpipe Water Level Readings	5
Table 3. Engineering Properties for Soil	6

List of Figures

Figure 01 Test Hole Location Plan

List of Appendices

Appendix A Laboratory Testing Results

Appendix B Provincial Well Hydrograph

I.0 Introduction

This report summarizes the results of the geotechnical exploration completed by TREK Geotechnical Inc. (TREK) for the preliminary design of upgrades to the existing Conway Lift Station in Winnipeg, Manitoba for the City of Winnipeg. The terms of reference for the investigation are included in our proposal to MPE Engineering Ltd. (MPE) dated August 25, 2023. The reduced scope of work as per email confirmation dated 18 September 2023 includes a sub-surface investigation, laboratory testing, test hole logs, and this report. This report is limited to provision of factual information obtained in the subsurface investigation, along with parameters and recommendations for excavations and shoring.

2.0 Field Program

2.1 Sub-surface Investigation

The sub-surface investigation was completed on October 12, 2023, under the supervision of TREK personnel to determine the soil stratigraphy and groundwater conditions at site. One deep test hole TH23-01 was drilled and sampled. The test hole location is shown on Figure 01.

The test hole was drilled by Paddock Drilling Ltd. with a track mounted Mobile B57 geotechnical drill rig equipped with 125 mm solid stem augers, 170 mm hollow stem augers and HQ coring equipment. TH23-01 was advanced 0.9 m below the depth of power auger refusal using casing and HQ coring equipment. Sub-surface soils encountered during drilling were visually classified based on the Unified Soil Classification System (USCS). Disturbed (auger cutting and split spoon) samples were taken at regular intervals and relatively undisturbed (Shelby Tube) samples were collected at select depths. Standard Penetration Tests (SPTs) were completed at depths where split spoon samples were taken. Undrained shear strength testing was performed in the field on the grab samples (i.e. auger cuttings / disturbed samples) using Torvane and/or Pocket Penetrometer testing devices, the results are provided on the test hole logs for general information only. A standpipe piezometer was installed in the test hole and the hole was backfilled with bentonite chips, as well as silica sand around the piezometer tip.

All samples retrieved during drilling were transported to TREK's testing laboratory in Winnipeg, Manitoba. Laboratory testing consisted of moisture content determination on all disturbed samples. Bulk unit weight measurements and unconfined compression tests were also completed on Shelby tube and core samples. Atterberg limits and grain size analysis (hydrometer method) tests were also completed on select samples. Laboratory testing results are included in Appendix A.

Test hole coordinates were recorded using a hand held GPS and the elevation was surveyed using a rod and level relative to a temporary benchmark (TBM 1) located at the base of the existing hydro pole. The location of the TBM is also shown on Figure 01. The test hole logs include a description of the soil units encountered and other pertinent information such as groundwater, sloughing conditions, and a summary of the laboratory testing results.

2.2 Soil Stratigraphy

A brief description of the soil units encountered during drilling is provided below. All interpretations of soil stratigraphy for the purposes of design should refer to the detailed information provided on the attached test hole logs.

The soil stratigraphy generally consists of near-surface layers of topsoil and clay fill to a depth of 0.9 m. The clay fill is stiff, intermediate to high plastic, mottled black and grey. The fill is underlain by silty clay to a depth of 5.0 m, followed by silt till. The silty clay contains trace sand, is high plastic, and is stiff becoming firm to stiff with depth. A transition layer from silty clay to silt till was encountered between 4.5 to 5.0 m depth. Silt till was encountered at a depth of 5.0 m and it contains trace sand, trace gravel, is moist, non-plastic and compact to dense becoming dense below 9.1 m. In Winnipeg, the silt till typically contains a heterogenous mixture of clay, sand, and gravel within a predominately silt matrix. Although not confirmed during drilling with the augers, cobbles and boulders are commonly present within the silt till. After auger refusal occurred, granitic cobbles were recovered from the core samples taken below a depth of 12.9 m.

Based on geology maps and experience in the area, the depth to bedrock in the area is on the order of 15 m but may vary significantly. The site is located on the boundary between two geologic units at the bedrock surface. The Stony Mountain Formation, Gunn Member appears to be present to the north of the site, while the Red River Formation, Upper Fort Garry member appears to be present south of the site.

2.3 Power Auger Refusal

Power auger refusal was observed at 12.2 m depth on cobbles within the silt till attest hole TH23-01.

2.4 Groundwater and Sloughing Conditions

Groundwater seepage, sloughing and squeezing was observed at the time of the subsurface investigation and is outlined in Table 1 below.

Test Hole	Depth (m)										
Test hole	Observed Seepage	Water Level After Drilling	Observed Sloughing	Test Hole Open to After Drilling							
TH23-01	Below 10.7	4.3	Below 4.3 m	4.3							

Table 1. Summary of Seepage and Sloughing During Drilling

The standpipe installed in TH23-01 was monitored twice in November 2023, as summarized in Table 2.

A hydrograph provided by the Province of Manitoba for provincial well G05MJ087 that is located 1 km west of the site is attached in Appendix B.

	Water Level D	Pepth Below Ground	Surface (m)				
Standpipe	Stratum / Tip Depth Below Ground Surface (m)	Nov. 01, 2023	Nov. 13, 2023				
SP23-01	Silt Till / 13.1	8.15	8.38				

Table 2. Summary of Standpipe Water Level Readings

These observations are short-term and should not be considered reflective of (static) groundwater levels at the site which would require monitoring over an extended period of time to determine. It is important to recognize that groundwater conditions may vary seasonally, annually, or as a result of construction activities.

3.0 Excavations and Shoring

It is understood that an excavation depth of about 11 m is required to construct the new lift station upgrades and that shoring for the excavation will be required. The excavation footprint is not known at this time, but is anticipated to be on the order of 5 m by 5 m.

3.1 Temporary Excavations

Excavations must be carried out in compliance with the current relevant regulations under the Manitoba Workplace Safety and Health Act to suit the planned and expected construction activities and schedule. Excavations greater than 3 m deep must be designed and sealed by a professional engineer. If space is limited or the stability of adjacent structures may be endangered by an excavation, a shoring system may be required to prevent damage to, or movement of, any part of adjacent structures, and the creation of a hazard to workers and the public.

Based on the 11 m excavation depth and the sensitivity of surrounding structures to settlement, conventional shoring will need to be braced. Shoring will need to extend through the clay layer and into the silt till layer. Undrained soil conditions may govern design of the shoring in the short term and effective stress conditions should be considered for the long-term stability. Both undrained and drained soil conditions should be checked and the more conservative condition used to design the shoring.

The earth pressure distribution provided in Figure 02 can be used for braced shoring design, however the shoring designer should refer to the Canadian Foundation Engineering Manual (5th Edition, 2023) and the information provided on the test hole logs for consideration of the layered soil profile in design. The apparent earth pressure distribution shown on Figure 02 can be used for temporary braced shoring design in stiff clay and is not applicable for unsupported shoring. The effect of any surcharge loads must be added to the force on the wall in addition to the calculated earth pressures. The appropriate earth pressure condition should be used to calculate the lateral earth pressure due to surcharge loads. Suggested soil parameters for use in shoring design are provided in Table 3, however it is the Contractor's responsibility to review the test hole logs and confirm the selection of soil parameters for design.

Material	Depth Below Site Grade	Undrained Shear Strength	Effective Cohesion	Eriction		Effective Unit Weight	Earth Pressure Coefficients (Rankine ¹)							
	(m)	(kPa)	(kPa)	(degrees)	(kN/m³)	(kN/m³)	Ko	Ka	Кр					
Clay	0 – 5	50	5	25	17.5	7.7	0.6	0.4	2.5					
Silt Till	5 – 13	n/a	5	32	22.0	12.2	0.47	0.3	3.2					
Sand (fill)	-	n/a	0	30	20.0	10.2	0.5	0.3	3.0					

Table 3. Engineering Properties for Soil

Note 1: The effective stress earth pressure coefficients assume the magnitude of wall rotation is sufficient to develop the full earth pressure. The values should be reduced to suit the allowable wall rotation. Refer to Section 20.2.5 of the Canadian Foundation Engineering Manual (5th Edition 2023).

Considerations for the shoring design include:

- Design should be based on local experience with similar shoring systems as well as theoretical and empirical methods,
- Length of time the excavation shoring system will be in service,
- Earth and water pressures,
- Excavation staging,
- Excavation base stability,
- Spoil material from the excavation should not be stockpiled behind the shoring,
- Surcharge loading (q) from construction equipment should be considered in the design. The surcharge loading should be confirmed based on the equipment proposed for use by the contractor,
- Provide positive surface drainage away from the excavation to minimize water infiltration behind the shoring,
- Protection from frost effects are best mitigated by providing free draining backfill behind the shoring. Insulation could also be used to minimize frost penetration into the retained soil,
- Current Manitoba Building Code (MBC 2024) requirements
- Chapter 20 of the Canadian Foundation Engineering Manual (5th Edition 2023)
- Water pressure should be included in the analysis below the water table and/or behind the portion of the shoring that is not drained. The unit weight of water is 9.8 kN/m³. The groundwater or piezometric level in the clay soil is generally considered to be about 2 m below prairie level (i.e. existing site grade).
- A monitoring program should be established to record the performance of the shoring system from the onset of installation to removal. The monitoring program should include top of pile surveys as a minimum to measure and track lateral movement of the shoring with time. The

vertical profile of soldier piles could be monitored using slope inclinometer casing and measurement of earth pressures acting on the shoring and groundwater pressure measurements could also be considered if deemed important by the shoring designer.

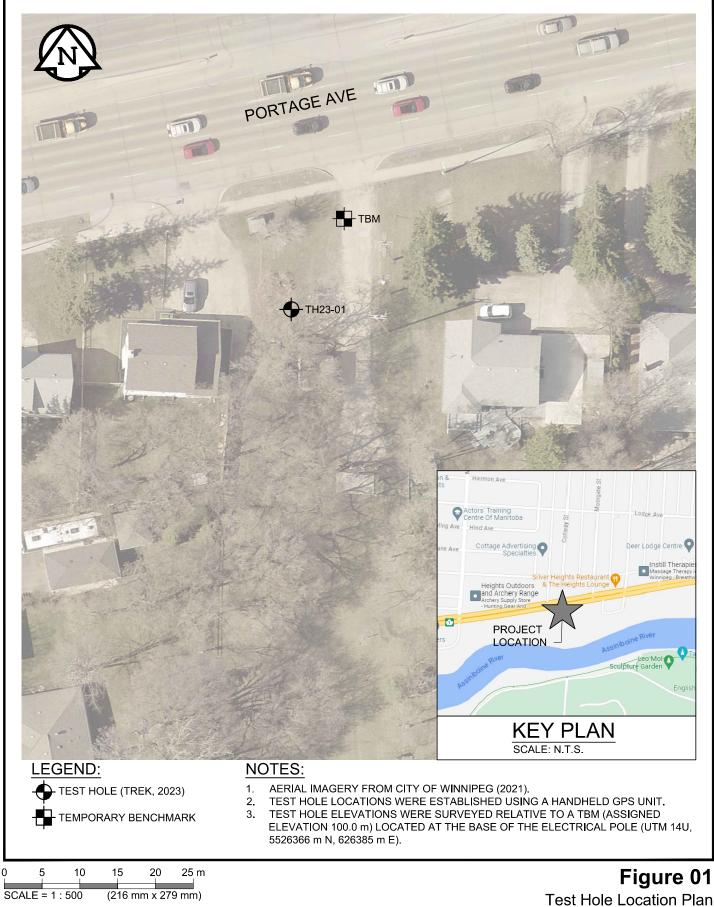
Ground movements behind the shoring and associated settlement are largely unavoidable. The amount of movement cannot be predicted with a high degree of accuracy as it is as much a function of the excavation procedures and workmanship as it is of theoretical considerations. In this regard, good contact between the retaining wall or timber lagging and retained soil should be maintained throughout the construction process. Free-draining sand fill should be used to fill in any voids behind the wall.

It is anticipated that the design of excavation slopes and temporary shoring will be the responsibility of the Contractor. Shoring designs or excavations will need to be designed and sealed by a professional engineer, and shop drawings should be reviewed by TREK prior to construction for review and comment. Shoring design should account for potential base heave and the need for dewatering and/or depressurization of the till or bedrock.

4.0 Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation and laboratory testing). Soil conditions are natural deposits that can be highly variable across a site. If subsurface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work or standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.


This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of MPE Engineering Ltd. (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Figures

0512 011 00 MPE Engineering Conway Lift Station

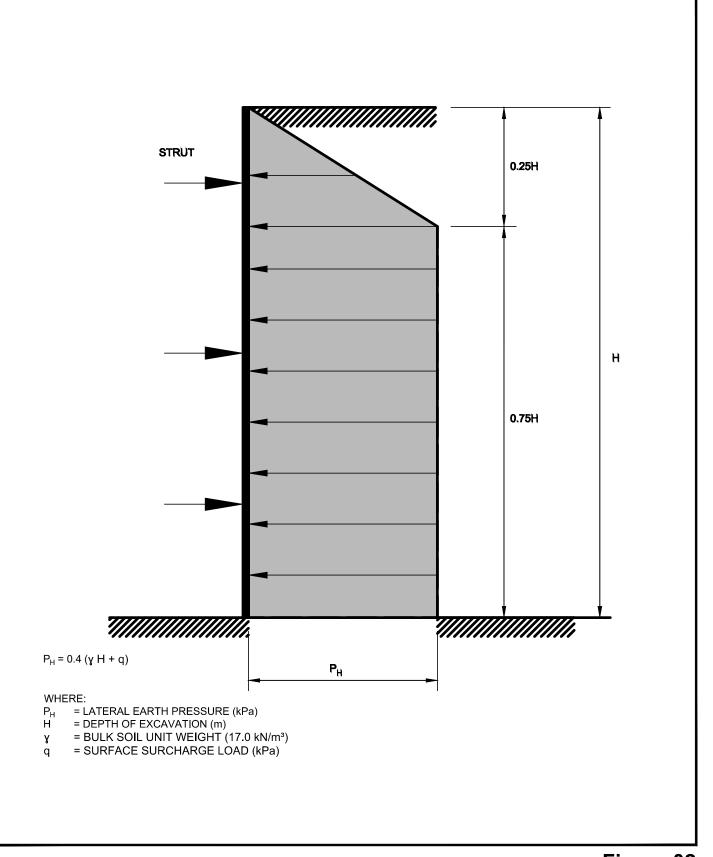


Figure 02 Apparent Temporary Lateral Earth Pressure Distribution Braced Excavation in Stiff Clay

Sub-Surface Logs

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOT

1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.

2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.

3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ma	ajor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Classif	Laboratory Classification Criteria			ş				
	raction	gravel no fines)	GW		Well-graded gravels, gravel-sand mixtures, little or no fines		$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 4;} C _c = <u> </u>	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		ieve sizes	#10 to #4	#40 to #10	#200 to #40 / #200	< #200
sieve size)				Poorly-graded gravels, gravel-sand mixtures, little or no fines	grain size curve, er than No. 200 sieve) ng dual symbols*	Not meeting all gradation require		nents for GW	ە	ASTM Sieve	#10	#401	#500	¥	
s No. 200	Gra than half o	(More than half Cra is larger that to Gravel with fines (Appreciable amount of fines) MD MD			Silty gravels, gravel-sand-silt mixtures	r than No. g dual syn	Atterberg limits below "A" line or P.I. less than 4		Above "A" line with P.I. between 4 and 7 are border-	Particle Size	٩			+	
ained soils larger than		GC		Clayey gravels, gravel-sand-silt mixtures	niri o nalla	Atterberg limits above "A line or P.I. greater than 7	'A"	line cases requiring use of dual symbols	Par		Ľ	, 8	25		
Coarse-Gr naterial is	Matterial is the standard in the standard is the standard in the standard is t			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Well-graded sands, gravelly sands, little or no fines	Determine percentages of sand and gravel from grain size curve. depending on percentage of fines (fraction smaller than No. 200 s coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP Less than 12 percent GW, GC, SM, SC 6 to 12 percent Borderline case4s requiring dual symbols*	$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		шш	2.00 to 4.75	0.425 to 2.00	0.075 to 0.425	c/0.0 >	
n half the r				SP Poorly-graded sands, gravelly sands, little or no fines			Not meeting all gradation requirements for SW						. 0	0	
(More thai	(More than half the Sands (More than half of coarse is smaller than 4.75 n CAptrectable anount of fines) (Little o Clear (Little o		M Silty sands, sand-silt mixtures		lemine percentages of s, pending on percentage of arse-grained soils are cla: arse than 5 percent More than 12 percent 6 to 12 percent Bord	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	lai	5				Clay	
	(More t Sands w Appre amount c				Clayey sands, sand-clay mixtures	Determir dependir coarse-g Less More 6 to 1	Atterberg limits above "A line or P.I. greater than 7	'A" 7	line cases requiring use of dual symbols	Material		Sand	Medium	Fine Silt or	SIIT OF CIAY
e size)	, As		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	80 Plasticity	Plasticity	/ Chart	r LINE		e Sizes		-	i i i	
Fine-Grained soils (More than half the material is smaller than No. 200 sieve size)	Silts and Cla	(Liquid limit less than 50)	CL Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays		70					S	> 12 in. 3 in to 12 in	2	3/4 in. to 3 in. #4 to 3/4 in	15 2 14	
soils er than No	Si	<u> </u>	OL	==	Organic silts and organic silty clays of low plasticity	- 00 (%)		CH		Particle Size	ASTM:	+	_		_
e-Grained al is small	ski	t 50)	MH		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts	- 1 40 - L 40 - L 40 - S30 -				Pa	mm	> 300 75 to 300	222	19 to 75 4 75 to 19	n 10
Fine the materi	alf the material is Silts and Clays (Liquid limit greater than 50)	СН		Inorganic clays of high plasticity, fat clays	20-			MH OR OH		L	75 1	· ·	191 4 75) F	
than half	HO Break Han half th		OH		Organic clays of medium to high plasticity, organic silts		ML or OL 16 20 30 40 50 LIQUID LI	60 70 _IMIT (%)	80 90 100 110	Material	5	ers	3_		-
(More	Highly Organic Soils Soils A				Peat and other highly organic soils	Von Post Classification Limit Strong colour or odour, and often fibrous texture					ואומוכ	Boulders	Gravel	Coarse Fine	

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	63	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength

- VW Vibrating Wire Piezometer
 - SI Slope Inclinometer
 - $\ensuremath{\boxtimes}$ Water Level at Time of Drilling
 - ▼ Water Level at End of Drilling
 - ✓ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent
with *	with silt, with sand	> 35 percent

* Used when the material is classified based on behaviour as a cohesive material

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

Descriptive Terms	<u>SPT (N) (Blows/300 mm)</u>											
Very loose	< 4											
Loose	4 to 10											
Compact	10 to 30											
Dense	30 to 50											
Very dense	> 50											

The Standard Penetration Test blow count (N) of a cohesive soil can be related to its consistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

Sub-Surface Log

ut		ELI		LHL																					
Clien	Client: MPE Engineering										ect Num	ber:	0512-011-00											_	
Proje	ect Name	e: Cor	way Lift S	Station-W	Vinnipeg, N	ИB				Loca	tion:		UTM N-5526354, E-626378											_	
Cont	ractor:	Pad	dock Drill	ling Ltd.						Grou	Ind Elev	ation:	99.895 m m (local datum)									_			
Meth	Method:		mm Solid St	Date Drilled:			Octo	oer 12	, 202	3															
	Sample	Type:			Grab (G)		Split Spoon		S) / SF	зрт 📉		Split Barrel (SB) / LPT					Core (C)								
	Particle	Size L	egend:		Fines		Clay	Π	∭ Silt	.	🔅 Sar	nd		Gra	vel	57	<u> </u>	obbles	S		Βοι	ulder	S		
	Backfill	Legend	d:		Bentonite	×	Ce	ment		Drill Cu	uttings		Filter P Sand	ack			irout			<u> </u>	Slou	•			
								e	ber		16 ⁻	□ Bul (kl 17 18	lk Unit N/m ³) 3 19	: Wt 20	21			ined S ngth (k							
) oth	Soil Symbol	SP23-01										Sample Type	Sample Number	SPT (N)		Particle				<u>Test Type</u> ∆ Torvane ∆					
Depth (m)	oil S	SP2			IVI	ATERI	AL DES	GRIPTI	ON			bldm		SPT	0 2	20 40 60 80 100 PL MC LL			Pocket Pen.						
	Ň		-										San		0 2	PL MC LL 20 40 60 80 100 0				○ Field Vane ○ 50 100 150 20					
	<u>, , , , , , , , , , , , , , , , , , , </u>				TOPSOIL)		trace ro	otlets, t	trace sand	, black, r	noist, firr	n	G1			•				¢					
-0.5-					e plasticity trace sand		silt inclu	usions ((<20 mm (diam)															
			- mot	tled black	k and grey	4, 1100			(20 11111	alearn.)			G2			•				4	b				
-1.0-				n plasticit	y																				
		C		ty, trace : y brown	sand, trace	e silt in	clusions	(<10 m	nm diam.)				G3			•						0			
-1.5			- mois	st, stiff n plasticit																					
-2.0-			brown be		-																				
			DIOWITDE	510W 2.0 I									G4		-						4				
2.5																									
3.0													_G5_				•			¢	7				
													T 0							- 57	ABL				
-3.5-			firm to sti	iff below	35 m								Т6												
15/23			111111000		0.0 111								G7							¢					
																	-			_					
-4.5-			till inclusi	ions trac	ce sand, tra	ace dra	avel (<15	i mm di	am) helov	v 4 4 m			G8							æ					
					YER (CLA					<u> </u>		-1			•							_			
<u>ਜ</u> _5.0−		ç) - trace	sand, trac	e grave	el (< 15 i	mm dia	m)				Т9					22	.8 🗆						
			- light	tbrown	act to dens	-			,																
5.5- 			- no p	olasticity		50																			
HANG 1212-0-120-0-0-0-													_G10							_					
≥ <u> </u>												Ν	SS11	32	•					_		_			
0 1-6.5-												\vdash													
	٥QC																								
, E																									
₹_7.5-													G12		•					\rightarrow					
													SS13	18	•					\neg					
-0.8-0												\vdash	¥												
¥ 8.5−																									
- 1- -																	1 10			-+					
SO - 9.0-	pj. K												G14		₽ ₽⊔		 *	<u>, • . • . • .</u>	•••	-+					
			dense be	elow 9.1 r	m							$ \rangle$	SS15	33	•										
SUB-SURFACE LOG												\vdash	\												
-SUR																									
g Logg	ed By:	Than	eer Door	ga		_ F	Reviewe	d By:	Gil Robir	nson			_	Projec	t En	gineer	r: _N	lichae	l Var	<u>n Hel</u>	den				

Sub-Surface Log

2 of 2

			HNICAL						ا بالد	Jnit Wt		1		· .	0	
	ō			be	her		16	니 대 17	(kN/r 18	n ³) 19	20 21		Stre	ength		r
	Soil Symbol	SP23-01		Sample Type	Sample Number	2		Part		ize (%)			<u>est Ty</u> Torva		
55	oil S	SP2	MATERIAL DESCRIPTION	du	ble	Image: Non-state Image: Non-state		40	60 80 100 MC LL			Pocket Pen. Qu X				
	ŭ			Sa	Sam					; L 60	L 80 100	0	OF 50 1	ield Va	ane ()	
- ic								20		00	00 100				50 2	.002.
					G16	-		ШТ	пп		•	•				-
0.5		* *		E		1	-									
1.0				X	SS17	26	•									_
- initial init									-							-
1.5																
2.0-1	ŊĊ				G18	-						,				
2.0 1				×		1 1 51/										
2.5					10010	61mm	J									-
يرليب					000											-
3.0-	90		- some granite cobbles below 12.9 m		C20 C21	1										
			END OF TEST HOLE AT 13.1 m IN SILT TILL Notes:													
			1. Power auger refusal observed at 12.2 m depth and drill method switched to HQ coring.													
			 Seepage observed at 10.7 m depth. Sloughing observed at 4.3 m depth from transition layer. 													
			 Sloughing observed at 4.3 m depth from transition layer. Test hole open to 4.3 m depth immediately after drilling. 50 mm diameter PVC standpipe piezometer (SP23-01) fitted with slotted pip 													
			installed at 13.1 m depth.	e												
			6. Water level in standpipe at 8.15 m below ground surface on November 1, 2023, and at 8.38 m below ground surface on November 13, 2023													
			7. Test hole elevation surveyed relative to TBM 1 (hydro pole on north west													
			corner of property) with assumed datum elevation of 100.000 m.													

Appendix A

Laboratory Testing

ECHNICAL Quality Engineering | Valued Relationships

Date	November 8, 2023
То	Thanveer Doorga, TREK Geotechnical
From	Angela Fidler-Kliewer, TREK Geotechnical
Project No.	0512-011-00
Project	Conway Lift Station – Winnipeg, MB
Subject	Laboratory Testing Results – Lab Req. R23-514
Distribution	Michael Van Helden

Attached are the laboratory testing results for the above noted project. The testing included moisture content determinations, particle size distribution (Hydrometer method) and Shelby Tube visual classification and related testing.

Regards,

Angela Fidler-Kliewer, C.Tech.

Attach.

Review Control:

	Prepared By: AFK	Reviewed By: AFK	Checked By: NJF
--	------------------	------------------	-----------------

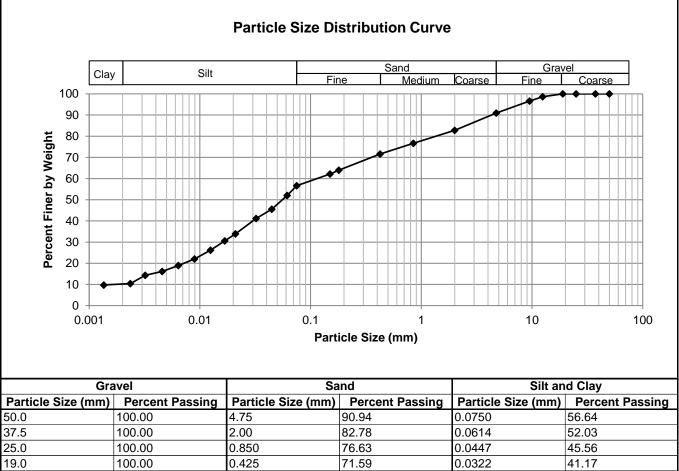
LABORATORY REQUISITION

CLIENT		MPE Engine	vin -									- de	
PROJEC1		MPE Enginee								ROJE			
ROOLOI	INAME	Conway Lift S	Station-vyi	nnipeç	<u>7. MB</u>				ľ	IELD T	ECHNICIAN:	<u>Thanve</u>	eer Doorga
TEST HOLE NUMBER	SAMPLE NUMBER	DEPTH OF SAMPLE (ft)	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS			Soil Description/Comments
TH23-01	G1	0.0 - 0.8		X	-		-	Ŭ			-+	+ +	CLAY TOPSOIL
TH23-01	G2	2.0 - 2.5		X				. 1			-+ +-		CLAY (Fill)
TH23-01	G3	4.0 - 4.5		X			1			<u>├</u>		+ +	CLAY
TH23-01	G4	7.0 - 7.5		X								+ +	
TH23-01	G5	9.0 - 9.5		X	-		- 2				-+-+-		
TH23-01	T6	10.0 - 12.0		X						\mathbf{X}			
TH23-01	G7	12.5 - 13.0		X								+ +	
TH23-01	G8	14.5 - 15.0		X								+ +	
TH23-01	Т9	15.0 - 17.0		X						X	-+ +-		possible transition from day to sil
TH23-01	G10	19.0 - 19.5		X									silt hill.
TH23-01	SS11	20.0 - 21.5		X									an th
TH23-01	G12	24.0 - 24.5		\mathbf{X}	0.5								
TH23-01	SS13	25.0 - 26.5		X			ь.						
TH23-01	G14	29.0 - 29.5		X		3.	X						
TH23-01	SS15	30.0 - 31.5		X				-11					
TH23-01	G16	34.0 - 34.5		X			\mathbf{X}						
TH23-01	SS17	35.0 - 36.5		X									
TH23-01	G18	39.0 - 39.5		X			\mathbf{X}						11/2
TH23-01	8 \$19	40.0 - 40.2	_	No.			· .]						b recovery
TH23-01	C20	42.2 - 42.5											Gobbles from Till Pour Baulder / Badrock
TH23-01	C21	42.5 - 43.2	[Bourser / Rodrock
- lour	.84	find		> Sa 9	inp) 1	n so	cal k imple	cted 2 bo	a gs				
REQUESTE	ED BY:	Thanveer D		<u> </u>		RT TC	_	M.	V. H		TD		REQUISITION NO.
COUNSI 14													
OMMENT				-	AIE	REQU	IRED		121	TP_			R23-514

1

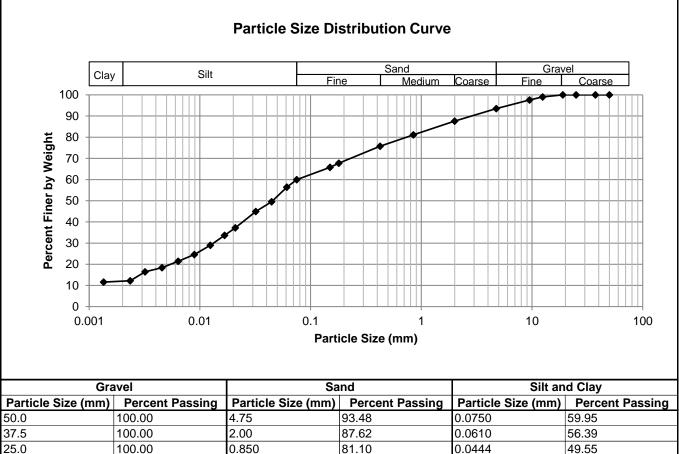
Project No.	0512-011-00
Client	MPE Engineering
Project	Conway Lift Station - Winnipeg, MB

Sample Date	11-Oct-23
Test Date	29-Oct-23
Technician	DS

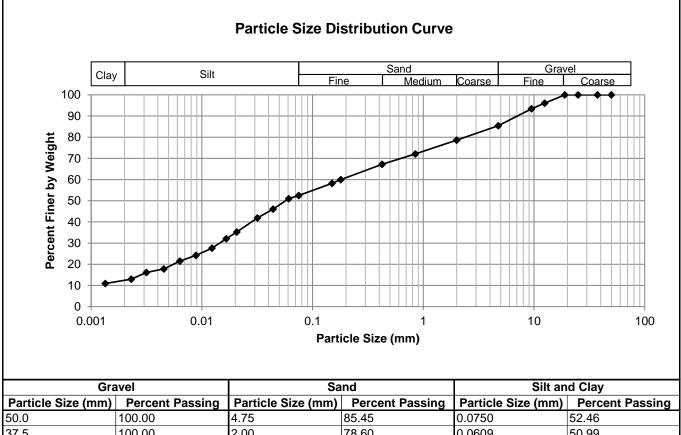

Test Hole	TH23-01	TH23-01	TH23-01	TH23-01	TH23-01	TH23-01
Depth (m)	0.0 - 0.2	0.6 - 0.8	1.2 - 1.4	2.1 - 2.3	2.7 - 2.9	3.8 - 4.0
Sample #	G1	G2	G3	G4	G5	G7
Tare ID	N18	E63	M67	AC33	158	F128
Mass of tare	9.0	7.0	6.7	6.8	7.0	8.5
Mass wet + tare	235.4	248.7	218.2	279.5	211.7	242.6
Mass dry + tare	175.6	188.8	171.4	236.4	147.8	169.8
Mass water	59.8	59.9	46.8	43.1	63.9	72.8
Mass dry soil	166.6	181.9	164.7	229.6	140.8	161.3
Moisture %	35.9%	32.9%	28.4%	18.8%	45.4%	45.1%

Test Hole	TH23-01	TH23-01	TH23-01	TH23-01	TH23-01	TH23-01
Depth (m)	4.4 - 4.6	5.8 - 5.9	6.1 - 6.6	7.3 - 7.5	7.6 - 8.1	8.8 - 9.0
Sample #	G8	G10	SS11	G12	SS13	G14
Tare ID	W07	C12	AC14	P07	E93	M00
Mass of tare	8.7	8.5	7.1	8.6	8.6	6.8
Mass wet + tare	235.3	229.6	223.1	225.3	251.8	268.8
Mass dry + tare	200.4	208.8	204.4	208.8	232.6	250.0
Mass water	34.9	20.8	18.7	16.5	19.2	18.8
Mass dry soil	191.7	200.3	197.3	200.2	224.0	243.2
Moisture %	18.2%	10.4%	9.5%	8.3%	8.6%	7.7%

Test Hole	TH23-01	TH23-01	TH23-01	TH23-01	
Depth (m)	9.1 - 9.6	10.4 - 10.5	10.7 - 11.1	11.9 - 12.0	
Sample #	SS15	G16	SS17	G18	
Tare ID	E49	W47	W28	N76	
Mass of tare	6.8	8.6	8.6	8.8	
Mass wet + tare	262.3	390.6	244.9	401.8	
Mass dry + tare	243.4	363.2	226.2	361.6	
Mass water	18.9	27.4	18.7	40.2	
Mass dry soil	236.6	354.6	217.6	352.8	
Moisture %	8.0%	7.7%	8.6%	11.4%	


Project No. Client Project	0512-011-00 MPE Engineering Conway Lift Station- Winnipeg, MB		CERTIFIED BY
Test Hole	TH23-01		
Sample #	G14		
Depth (m)	8.8 - 9.0	Gravel	9.1%
Sample Date	11-Oct-23	Sand	34.3%
Test Date	03-Nov-23	Silt	46.5%
Technician	DS	Clay	10.2%

25.0	100.00	0.850	76.63	0.0447	45.56
19.0	100.00	0.425	71.59	0.0322	41.17
12.5	98.68	0.180	63.97	0.0210	33.92
9.50	96.62	0.150	62.16	0.0168	30.56
4.75	90.94	0.075	56.64	0.0125	26.16
				0.0090	22.02
				0.0064	18.95
				0.0046	16.10
				0.0032	14.35
				0.0024	10.39
				0.0014	9.75


Project No. Client Project	0512-011-00 MPE Engineering Conway Lift Station- Winnipeg, MB		CERTIFIED BY
Test Hole	TH23-01		
Sample #	G16		
Depth (m)	10.4 - 10.5	Gravel	6.5%
Sample Date	11-Oct-23	Sand	33.5%
Test Date	03-Nov-23	Silt	48.6%
Technician	DS	Clay	11.3%

37.5	100.00	2.00	87.62	0.0610	56.39
25.0	100.00	0.850	81.10	0.0444	49.55
19.0	100.00	0.425	75.77	0.0320	44.89
12.5	99.05	0.180	67.71	0.0209	37.23
9.50	97.57	0.150	65.79	0.0167	33.67
4.75	93.48	0.075	59.95	0.0124	29.01
				0.0089	24.63
				0.0064	21.39
				0.0046	18.38
				0.0032	16.42
				0.0024	12.17
				0.0014	11.58

Project No. Client Project Test Hole	0512-011-00 MPE Engineering Conway Lift Station- Winnipeg, MB TH23-01		Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com
Sample #	G18		
Depth (m)	11.9 - 12.0	Gravel	14.5%
Sample Date	11-Oct-23	Sand	33.0%
Test Date	03-Nov-23	Silt	40.3%
Technician	DS	Clay	12.1%

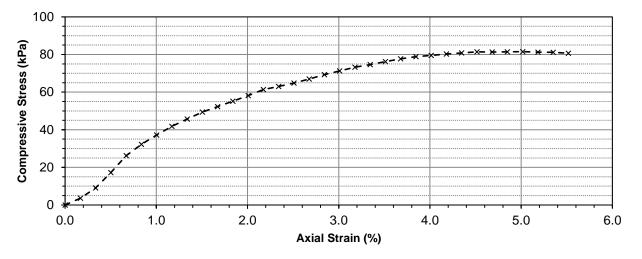
Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing
50.0	100.00	4.75	85.45	0.0750	52.46
37.5	100.00	2.00	78.60	0.0609	50.99
25.0	100.00	0.850	72.15	0.0441	46.08
19.0	100.00	0.425	67.22	0.0318	41.90
12.5	96.08	0.180	59.99	0.0207	35.27
9.50	93.41	0.150	58.25	0.0166	32.07
4.75	85.45	0.075	52.46	0.0123	27.65
				0.0088	24.21
				0.0063	21.51
				0.0045	17.83
				0.0032	16.11
				0.0023	12.95
				0.0013	10.92

Project No. Client Project	0512-011-00 MPE Engineering Conway Lift Station - Winnipeg, MB
Test Hole	TH23-01
Sample #	T06
Depth (m)	3.0 - 3.7

Sample Date11-Oct-23Test Date26-Oct-23TechnicianAD

Tube Extraction

Recovery (mm)	470	_			
	3.42	m	3.25 r	n	3.08 m
Bottom - 3.52 m	ו 				Top - 3.05 m
Mois Cont PP/ Visu	tent TV	Кеер		Qu Bulk	Slough
100) mm	170 mm	ļ	170 mm	30 mm
Visual Classif	fication		Moistur	e Content	
Material	CLAY		Tare ID		H35
Composition	silty		Mass tar	e (g)	8.4
trace sand			Mass we	t + tare (g)	308.6
trace silt till inclu	sions (<10 mm diam.)		Mass dry	/ + tare (g)	217.4
trace oxidation			Moisture	%	43.6%
			Unit We	eight	
			Bulk Wei	ight (g)	1171.8
Color	light brown				
Moisture	moist		Length (r		152.00
Consistency	firm to stiff			2	151.76
Plasticity	high plasticity			3	152.02
Structure	-		_	4	151.86
Gradation	-		Average	Length (m)	0.152
Torvane			Diam. (m	ım) 1	73.05
Reading		0.65		2	72.74
Vane Size (s,m,		m		3	72.91
Undrained Shea	Undrained Shear Strength (kPa) 63.			4	72.73
Pocket Penet	rometer		Average	Diameter (m)	0.073
Reading	1	1.40	Volume (′m³)	6.33E-04
-	2	1.60		t Weight (kN/m ³)	18.1
	3	1.50		t Weight (pcf)	115.5
	Average	1.50		Weight (kN/m ³)	12.6
Undrained Shea	ar Strength (kPa)	73.6		Weight (pcf)	80.4


Project No. Client Project	0512-013-00 MPE Engine Renfrew Out		er Upgrades				
Test Hole Sample # Depth (m)	TH23-01 T06 3.0 - 3.7				Linconfing	ed Strength	
Sample Date Test Date Technician					Max q _u Max S _u	kPa 81.5 40.8	ksf 1.7 0.9
Specimen [Data						
Description	CLAY - silty, stiff, high pla		e silt till inclusi	ions (<10 mm diar	n.), trace oxid	lation, light brown, mo	pist, firm to
Length Diameter L/D Ratio Initial Area Load Rate	151.9 72.9 2.1 0.00417 1.00	(mm) (mm) (m ²) (%/min)		Moisture % Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit Plasticity Index	44% 18.1 12.6	(kN/m ³) (kN/m ³)	
Undrained S	Shear Stren	gth Tests					
Torvane				Pocket Penet	rometer		
		Shear Strength		Reading		d Shear Strength	
trace precipita trace oxidatior Vane Size m		ksf 1.33	Average	tsf 1.40 1.60 1.50 e 1.50	kPa 68.7 78.5 73.6 73.6	ksf 1.43 1.64 1.54 1.54	
Failure Geo Sketch:	metry			Photo:			
						THE STREET STREE	<u>6</u>

Unconfined Compressive Strength ASTM D2166

Project No.	0512-013-00
Client	MPE Engineering
Project	Renfrew Outfall Gate Chamber Upgrades

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0.70	0.0000	0.00	0.004169	0.0	0.00	0.00
10	1.00	0.2540	0.17	0.004176	15.1	3.62	1.81
20	1.45	0.5080	0.33	0.004183	37.8	9.04	4.52
30	2.13	0.7620	0.50	0.004190	72.1	17.20	8.60
40	2.88	1.0160	0.67	0.004197	109.9	26.18	13.09
50	3.39	1.2700	0.84	0.004204	135.6	32.25	16.12
60	3.81	1.5240	1.00	0.004211	156.8	37.22	18.61
70	4.20	1.7780	1.17	0.004218	176.4	41.82	20.91
80	4.53	2.0320	1.34	0.004226	193.0	45.68	22.84
90	4.85	2.2860	1.50	0.004233	209.2	49.42	24.71
100	5.10	2.5400	1.67	0.004240	221.8	52.31	26.15
110	5.35	2.7940	1.84	0.004247	234.4	55.18	27.59
120	5.61	3.0480	2.01	0.004254	247.5	58.17	29.08
130	5.89	3.3020	2.17	0.004262	261.6	61.38	30.69
140	6.04	3.5560	2.34	0.004269	269.2	63.05	31.52
150	6.20	3.8100	2.51	0.004276	277.2	64.83	32.41
160	6.39	4.0640	2.68	0.004284	286.8	66.95	33.48
170	6.60	4.3180	2.84	0.004291	297.4	69.30	34.65
180	6.78	4.5720	3.01	0.004298	306.5	71.29	35.65
190	6.96	4.8260	3.18	0.004306	315.5	73.28	36.64
200	7.09	5.0800	3.34	0.004313	322.1	74.67	37.34
210	7.23	5.3340	3.51	0.004321	329.1	76.17	38.09
220	7.37	5.5880	3.68	0.004328	336.2	77.67	38.84
230	7.48	5.8420	3.85	0.004336	341.7	78.82	39.41

Project No.0512-013-00ClientMPE EngineeringProjectRenfrew Outfall Gate Chamber Upgrades

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	7.55	6.0960	4.01	0.004343	345.3	79.49	39.75
250	7.63	6.3500	4.18	0.004351	349.3	80.28	40.14
260	7.69	6.6040	4.35	0.004359	352.3	80.83	40.42
270	7.75	6.8580	4.51	0.004366	355.3	81.39	40.69
280	7.76	7.1120	4.68	0.004374	355.8	81.36	40.68
290	7.78	7.3660	4.85	0.004382	356.9	81.45	40.72
300	7.80	7.6200	5.02	0.004389	357.9	81.53	40.77
310	7.79	7.8740	5.18	0.004397	357.4	81.27	40.64
320	7.79	8.1280	5.35	0.004405	357.4	81.13	40.57
330	7.76	8.3820	5.52	0.004413	355.8	80.64	40.32

Project No.	0512-011-00
Client	MPE Engineering
Project	Conway Lift Station - Winnipeg, MB
Test Hole	TH23-01
Sample #	T09
• (1 ()	40 50

420

 Depth (m)
 4.6 - 5.2

 Sample Date
 11-Oct-23

 Test Date
 26-Oct-23

 Technician
 AD

Tube Extraction

Recovery (mm)

4.82 m				4	Top - 4.57 m	
	Bulk Keep		Кеер			Moisture Content PP/TV Visual/
17	0 mm		170 mm			80 mm
Visual Class	ification			Moisture Cor	ntent	
Material	CLAY (TILL)		-	Tare ID		E01
Composition	silty		_	Mass tare (g)		8.4
trace sand			-	Mass wet + tar	e (g)	295.4
trace gravel (<	25mm diam.)		-	Mass dry + tare		264.8
trace to some s	ilt till inclusions (<50	mm diam.)	-	Moisture %		11.9%
			-	Unit Weight		
			-	Bulk Weight (g)	1458.0
Color	light brown		_	0 (0	,	
Moisture	moist		-	Length (mm)	1	151.62
Consistency	very stiff		-	,	2	151.18
Plasticity	high plasticity		_		3	151.36
Structure	-		-		4	151.56
Gradation	-		-	Average Lengt	h (m)	0.151
Torvane				Diam. (mm)	1	72.06
Reading		0.55	-	· · · ·	2	73.78
Vane Size (s,m	n,l)	S	-		3	71.73
Undrained She	ear Strength (kPa)	134.8	-		4	72.84
	1		-	Average Diame	eter (m)	0.073
Pocket Pene Reading	trometer 1	1.90	-	Volume (m ³)		6.27E-04
	2	2.20	-	Bulk Unit Weig	ht (kN/m ³)	22.8
	3	2.10	_	Bulk Unit Weig		145.2
	Average	2.07	-	Dry Unit Weigh		20.4
	ear Strength (kPa)	101.3	-	Dry Unit Weigh		129.7

Project No. Client Project	0512-013-00 MPE Enginee Renfrew Outf	ering all Gate Chambe	r Upgrades				
Test Hole Sample # Depth (m) Sample Date	TH23-01 T09 4.6 - 5.2 2023-10-11				<u>Unconfine</u>	d Strength kPa	ksf
Test Date Technician	2023-10-11 2023-10-26 AD				Max q _u Max S _u	165.5 82.7	3.5 1.7
Specimen [Data						
Description		- silty, trace sand noist, very stiff, hi		(< 25mm diam.), ti	race to some s	ilt till inclusions (<5	0 mm diam.),
Length Diameter L/D Ratio Initial Area Load Rate	151.4 72.6 2.1 0.00414 1.00	(mm) (mm) (m ²) (%/min)		Moisture % Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit Plasticity Index	12% 22.8 20.4 94 27 4 67	(kN/m ³) (kN/m ³)	
Undrained S	Shear Streng	gth Tests					
Torvane				Pocket Pener	trometer		
		Shear Strength		Reading	Undrained	d Shear Strength	
trace precipita		ksf		tsf	kPa	ksf	
trace oxidatior Vane Size	า 134.8	2.82		1.90	93.2	1.95 2.25	
s s				2.20 2.10	107.9 103.0	2.25	
5			Average		101.4	2.12	
Failure Geo	ometry						
Sketch:	,			Photo:			

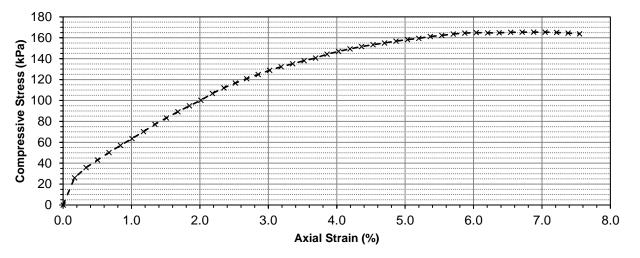
UCT_0512-011-00_T09_2023-11-08_AD Page 2 of 4

TREK TREK TECHNICAL
 теснински
 чискодования на на

 учиска
 0512 - 011-00

 ракол
 Соншану Цет Блатон

 Nie No.
 ТНП2-01


 Sample No.
 709
 Depth ______ 15.0- 17.0 Process _____ Dess_____ OCT 11,2025

Unconfined Compressive Strength ASTM D2166

Project No.	0512-013-00
Client	MPE Engineering
Project	Renfrew Outfall Gate Chamber Upgrades

Unconfined Compression Test Graph

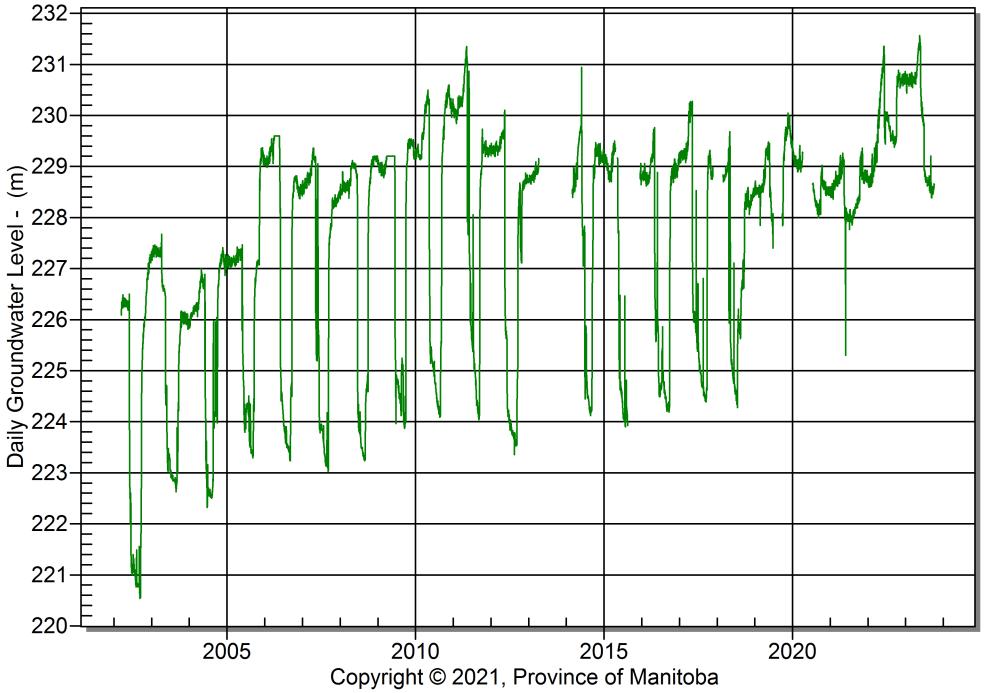
Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0.74	0.0000	0.00	0.004140	0.0	0.00	0.00
10	2.87	0.2540	0.17	0.004147	107.4	25.89	12.94
20	3.69	0.5080	0.34	0.004154	148.7	35.80	17.90
30	4.29	0.7620	0.50	0.004161	178.9	43.00	21.50
40	4.89	1.0160	0.67	0.004168	209.2	50.19	25.09
50	5.46	1.2700	0.84	0.004175	237.9	56.98	28.49
60	6.01	1.5240	1.01	0.004182	265.6	63.52	31.76
70	6.58	1.7780	1.17	0.004189	294.4	70.27	35.13
80	7.17	2.0320	1.34	0.004196	324.1	77.23	38.62
90	7.69	2.2860	1.51	0.004203	350.3	83.34	41.67
100	8.19	2.5400	1.68	0.004211	375.5	89.18	44.59
110	8.68	2.7940	1.85	0.004218	400.2	94.88	47.44
120	9.14	3.0480	2.01	0.004225	423.4	100.21	50.11
130	9.70	3.3020	2.18	0.004232	451.6	106.71	53.35
140	10.17	3.5560	2.35	0.004239	475.3	112.11	56.06
150	10.57	3.8100	2.52	0.004247	495.5	116.67	58.33
160	10.94	4.0640	2.68	0.004254	514.1	120.85	60.43
170	11.30	4.3180	2.85	0.004261	532.3	124.90	62.45
180	11.66	4.5720	3.02	0.004269	550.4	128.94	64.47
190	11.96	4.8260	3.19	0.004276	565.5	132.25	66.12
200	12.22	5.0800	3.35	0.004284	578.6	135.08	67.54
210	12.50	5.3340	3.52	0.004291	592.7	138.13	69.07
220	12.73	5.5880	3.69	0.004299	604.3	140.59	70.29
230	13.07	5.8420	3.86	0.004306	621.5	144.32	72.16

Project No.0512-013-00ClientMPE EngineeringProjectRenfrew Outfall Gate Chamber Upgrades

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	13.32	6.0960	4.03	0.004314	634.1	146.99	73.50
250	13.54	6.3500	4.19	0.004321	645.2	149.30	74.65
260	13.76	6.6040	4.36	0.004329	656.2	151.60	75.80
270	13.93	6.8580	4.53	0.004336	664.8	153.31	76.66
280	14.10	7.1120	4.70	0.004344	673.4	155.02	77.51
290	14.27	7.3660	4.86	0.004352	682.0	156.71	78.36
300	14.43	7.6200	5.03	0.004359	690.0	158.29	79.14
310	14.56	7.8740	5.20	0.004367	696.6	159.51	79.75
320	14.73	8.1280	5.37	0.004375	705.1	161.18	80.59
330	14.85	8.3820	5.54	0.004383	711.2	162.28	81.14
340	14.99	8.6360	5.70	0.004390	718.2	163.60	81.80
350	15.09	8.8900	5.87	0.004398	723.3	164.45	82.23
360	15.16	9.1440	6.04	0.004406	726.8	164.96	82.48
370	15.16	9.3980	6.21	0.004414	726.8	164.67	82.33
380	15.20	9.6520	6.37	0.004422	728.8	164.83	82.41
390	15.26	9.9060	6.54	0.004430	731.9	165.21	82.61
400	15.30	10.1600	6.71	0.004438	733.9	165.37	82.69
410	15.33	10.4140	6.88	0.004446	735.4	165.42	82.71
420	15.36	10.6680	7.04	0.004454	736.9	165.46	82.73
430	15.36	10.9220	7.21	0.004462	736.9	165.16	82.58
440	15.33	11.1760	7.38	0.004470	735.4	164.52	82.26
450	15.29	11.4300	7.55	0.004478	733.4	163.77	81.89



Appendix B

Provincial Well Hydrograph

G05MJ087 GF8 - OLIVE RL 13 ST.JAMES

GROUND LEVEL ELEVATION 236.528 METRES (776.01 FEET)

